
Bidirectional Search: 
Is It For Me?  
 
Nathan R. Sturtevant (@nathansttt) 
Associate Professor 
University of Denver







Collaborators

Jingwei Chen 
University of Denver

Robert Holte 
University of Alberta

Sneha Sawlani

Sandra Zilles

Ariel Felner

Eshed Shaham

Entry Compression (EC)

original PDB
1 3 4 8 9 2 3 10

1 4 2 3

The minimum value is stored so that the 
heuristic is still admissible (non-overesti-
mating).

Value Compression of 
Pattern Databases

Pattern Database Compression
What is a Pattern Database (PDB)?

A PDB is a heuristic that estimates the dis-
tance to the goal for search algorithms such 
as A*. It computes and stores the distances 
in an abstract state space and stores them 
in a table.

Entry Compression (Felner et al, 2007) 
compresses the PDB by combining entries 
and storing the minimum. Thus, there are 
fewer entries in the compressed PDB.

Value Compression (VC) [new]

VC keeps all entries in the PDB, but reduces 
the number of bits per entry. This reduces 
the ranges of values that can be stored.

original PDB (≥4 bits)
1 3 4 8 9 2 3 10

1 3 4 7 7 2 3 7

Value Compression Details

• Value Compression (VC) divides the 
heuristic values into ranges R1...Rn. Rang-
es are stored instead of values.

• The minimum value of the range is used 
during search to maintain admissibility.

• Dynamic programming is used to opti-
mize the ranges and maximize the aver-
age h-value in the compressed PDB.

Example of EC vs VC in Top Spin

Experimental Setup

The paper contains experiments on many 
domains and algorithms. We report on 
18-4 Top Spin here.

We compare compression factors in IDA* 
with BPMX as well as combinations of EC 
and VC. Combinations with VC have the 
best performance (bold).

Runtime Heuristic Distribution

General Observations

• Conventional wisdom says the low values 
in the PDB are more important than the 
high values. So, removing low values from 
the PDB should hurt performance.

• In practice, the most common heuristic 
values in the runtime distribution (looked 
up during search) must be preserved.

• Bidirectional Pathmax (BPMX) is crucial 
for local propagation of heuristic values and 
recovery of lost information.

• VC is most effective when the number 
of values in the PDB is just larger than the 
nearest power of two.

• EC can be effectively combined with VC.

Nathan R. Sturtevant, University of Denver; Ariel Felner, BGU; Malte Helmert, University of Basel

Value Compression: No wasted bits

Experimental Results

2x compressed PDB

compressed PDB (3 bits)

1,760MB 880MB 440MB
D Total V C2 VC2h̄ EC2 VC4h̄ EC4
0 1 1 12 2 10,188,753 4
1 11 11 22 40
2 94 94 94 186 340
3 731 731 731 1,430 2,596
4 5,353 5,353 5,353 10,340 18,736
5 37,275 37,275 37,275 70,894 127,756
6 245,468 245,468 245,468 457,304 813,700
7 1,508,099 1,508,099 1,508,099 2,722,458 4,724,408
8 8,391,721 8,391,721 8,391,721 14,408,820 23,870,392
9 40,012,497 40,012,497 40,012,497 63,502,746 190,013,262 97,318,252

10 150,000,765 150,000,765 150,000,765 212,692,340 290,434,356
11 393,482,172 393,482,172 393,482,172 478,114,034 393,482,172 553,276,900
12 612,084,904 612,084,904 612,084,904 601,419,722 1,170,638,373 549,750,508
13 440,655,534 440,655,534 440,655,534 328,304,534 217,340,348
14 110,437,757 110,437,757 110,437,757 59,883,892 26,009,144
15 7,389,524 7,460,178 7,389,524 2,721,910 634,464
16 70,633 70,654 11,924 616
17 21 2

Avg. 11.90 11.90 11.90 11.59 11.38 11.27

Static Dist.
Dynamic Dist.
MM Dynamic Dist.
3 Bit VC Dist
2 Bit VC

Pe
rc

en
ta

ge
 o

f S
ta

te
s

0

0.2

0.4

0.6

Heuristic Value
0 5 10 15

Memory EC VC VC-bits Nodes Time
1 1 1 8 3.88M 15.29
0.5 (A) 1 2 4 3.88M 15.32
0.375 1 2.66 3 4.03M 15.44
0.25 (B) 1 4 2 10.39M 33.63
0.5 (A) 2 1 8 7.11M 27.70
0.25 (B) 2 2 4 7.11M 27.88
0.1875 2 2.66 3 7.37M 28.44
0.125 (C) 2 4 2 30.43M 80.04
0.25 (B) 4 1 8 13.75M 51.06
0.125 (C) 4 2 4 13.74M 50.97
0.094 4 2.66 3 14.31M 51.52
0.0625 4 4 2 30.48M 77.68

Bidirectional Search: MM

• The MM algorithm guarantees that the 
search frontiers meet in the middle.

• Small heuristic values aren’t used.

Memory EC VC VC-bits Nodes Time
1 1 1 8 2.07M 30.60

0.5 2 1 8 3.55M 55.61
0.5 1 2 4 2.07M 30.93
0.25 4 1 8 5.42M 83.87
0.25 2 2 4 3.55M 55.55
0.25 1 4 2 4.63M 66.46

0.125 4 2 4 5.42M 84.06
0.125 2 4 2 5.19M 79.17

Moving AI Lab

DANIEL FELIX RITCHIE SCHOOL OF
ENGINEERING & COMPUTER SCIENCE

Award 1551406



Who am I?

Designed and 
implemented 
pathfinding 

engine



Lecture Takeaways
● When should I use bidirectional search? 
● What algorithm should I use for bidirectional search?



Pathfinding Architecture Optimizations 
by Steve Rabin & Nathan Sturtevant 

Bad Idea #2: Bidirectional Pathfinding



Optimal Bidirectional Search



Optimal Bidirectional Search !



Optimal Bidirectional Search !

All states that 
could be expanded



Optimal Bidirectional Search !

Choose a meeting 
point



Optimal Bidirectional Search !

Expand up to that 
point forward



Optimal Bidirectional Search !

Expand up to that 
point forward

Expand up to that 
point backward



Demo



Explanation
● Perfect heuristic near goal 
● Open space 

● Symmetric



New Algorithm: NBS
● NBS never expands more than 2x the states expanded by 

the best possible algorithm 
● In our theoretical framework 

● NBS does equal work in each direction

!



When should we use NBS?



Scenario 1: 
Weighted terrain



Weighted terrain
● Costly to look for alternate paths 

around weighted terrain



Scenario 2: 
Problem Asymmetry



Problem Asymmetry
● When forward is much more 

expensive than backwards 
● 3x worse on average 

● Also happens with weighted 
terrain



Scenario 3: 
Map Asymmetry



Map Asymmetry
● Common in city maps 
● Dense regions of pathfinding nodes 

● Bidirectional search will avoid the 
densest region



Scenario 4: 
Local Minima



Local Minima
● Many states look close, but aren’t 
● Could be fixed by a better heuristic

!



Testing in practice
● Web tool available for analysis 
● http://www.movingai.com/GDC18/test.html

http://www.movingai.com/GDC18/test.html


NBS Details







A*



A*
● Put start onto priority queue



A*
● Put start onto priority queue
● While queue not empty / solution not found



A*
● Put start onto priority queue
● While queue not empty / solution not found
● Among all states on queue:



A*
● Put start onto priority queue
● While queue not empty / solution not found
● Among all states on queue:
● Select the state with lowest f-cost



A*
● Put start onto priority queue
● While queue not empty / solution not found
● Among all states on queue:
● Select the state with lowest f-cost
● Expand it



A*: f-cost

start
goal



A*: f-cost

start
goal



A*: f-cost

start
goal

cost-so-far (g-cost)



A*: f-cost

start
goal

cost-so-far (g-cost)
estimate to goal (h-cost)



A*: f-cost

start
goal

cost-so-far (g-cost)
estimate to goal (h-cost)

f-cost = g-cost + h-cost = estimated path length



A*
● Put start onto priority queue 
● While queue not empty / solution not found 
● Among all states on queue: 
● Select the state with lowest f-cost 
● Expand it



A* → NBS

Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions, 
Jingwei Chen, Robert C. Holte, Sandra Zilles and Nathan R. Sturtevant, 
International Joint Conference on Artificial Intelligence (IJCAI), 2017

!

● Put start onto priority queue
● While queue not empty / solution not found
● Among all states on queue:
● Select the state with lowest f-cost
● Expand it



A* → NBS
● Put start/goal onto forward/backward priority queues

Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions, 
Jingwei Chen, Robert C. Holte, Sandra Zilles and Nathan R. Sturtevant, 
International Joint Conference on Artificial Intelligence (IJCAI), 2017

!

● While queue not empty / solution not found
● Among all states on queue:
● Select the state with lowest f-cost
● Expand it



A* → NBS
● Put start/goal onto forward/backward priority queues
● While queues not empty / solution not found

Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions, 
Jingwei Chen, Robert C. Holte, Sandra Zilles and Nathan R. Sturtevant, 
International Joint Conference on Artificial Intelligence (IJCAI), 2017

!

● Among all states on queue:
● Select the state with lowest f-cost
● Expand it



A* → NBS
● Put start/goal onto forward/backward priority queues
● While queues not empty / solution not found
● Among all states on queues:

Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions, 
Jingwei Chen, Robert C. Holte, Sandra Zilles and Nathan R. Sturtevant, 
International Joint Conference on Artificial Intelligence (IJCAI), 2017

!

● Select the state with lowest f-cost
● Expand it



A* → NBS
● Put start/goal onto forward/backward priority queues
● While queues not empty / solution not found
● Among all states on queues:
● Select the pair with lowest lower bound

Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions, 
Jingwei Chen, Robert C. Holte, Sandra Zilles and Nathan R. Sturtevant, 
International Joint Conference on Artificial Intelligence (IJCAI), 2017

!

● Expand it



A* → NBS
● Put start/goal onto forward/backward priority queues
● While queues not empty / solution not found
● Among all states on queues:
● Select the pair with lowest lower bound
● Expand both of them

Front-to-End Bidirectional Heuristic Search with Near-Optimal Node Expansions, 
Jingwei Chen, Robert C. Holte, Sandra Zilles and Nathan R. Sturtevant, 
International Joint Conference on Artificial Intelligence (IJCAI), 2017

!



NBS: lower bound

start
goal



NBS: lower bound

start
goal

u v



NBS: lower bound

start
goal

u v



NBS: lower bound

start
goal

u v



NBS: lower bound

start
goal

u v

gF(u)



NBS: lower bound

start
goal

u v

gF(u)

h(u, goal)



NBS: lower bound

start
goal

u v

gF(u)

h(u, goal)

fF(u) = gF(u) + h(u, goal)



NBS: lower bound

start
goal

u v



NBS: lower bound

start
goal

u v
gB(v)



NBS: lower bound

start
goal

u v
gB(v)

h(start, v)



NBS: lower bound

start
goal

u v
gB(v)

h(start, v)

fB(v) = gB(v) + h(start, v)



NBS: lower bound

start
goal

u v

!



NBS: lower bound

start
goal

u v

gF(u)

!



NBS: lower bound

start
goal

u v

gF(u)
gB(v)

!



NBS: lower bound

start
goal

u v

gF(u)
gB(v)

gF(u) + gB(v)

!



NBS: lower bound

lb(u, v) = max(fF (u),

fB(v),

gF (u) + gB(v))

!



NBS Data Structure
● Can efficiently find pair with minimum lower bound 
● Filter by f-cost then by g-cost

!



NBS Data Structure
● Can efficiently find pair with minimum lower bound 
● Filter by f-cost then by g-cost

● Cannot just select by f-cost (A*) or g-cost (Dijkstra)

!



NBS Guarantee
● NBS never expands more than 2x the states expanded by 

the best possible algorithm 
● In our theoretical framework 

● NBS does equal work in each direction

!



Suboptimal Solutions
● Use weighted A* if path quality doesn’t matter 

● Terminate the search when the first solution is found in 
bidirectional search

!



Summary / Conclusions
● Use NBS for bidirectional search 
● May want bidirectional search for: 
● Weighted terrain 
● Problem Asymmetry 
● Map Asymmetry 
● Local Minima

!



Questions?
● http://www.movingai.com/GDC18/ 
● Open-source implementation of NBS 
● Demo from this lecture* 
● Offline analyzer for analyzing pathfinding 
● Technical reference papers 

● Find me on twitter: 
● @nathansttt

http://www.movingai.com/GDC18/

