Bidirectional Search: Is It For Me?

Nathan R. Sturtevant (@nathansttt) Associate Professor University of Denver

Collaborators

Jingwei Chen University of Denver

Robert Holte University of Alberta

Sneha Sawlani

DRAGON AGE
 ORIGINS

Designed and implemented pathfinding engine

M,

Lecture Takeaways

- When should I use bidirectional search?
- What algorithm should I use for bidirectional search?

Pathfinding Architecture Optimizations by Steve Rabin \& Nathan Sturtevant

Bad Idea \#2: Bidirectional Pathfinding

Optimal Bidirectional Search

Optimal Bidirectional Search

Optimal Bidirectional Search

All states that could be expanded

Optimal Bidirectional Search

Choose a meeting point

Optimal Bidirectional Search

Expand up to that point forward

Optimal Bidirectional Search

Expand up to that point forward

Expand up to that point backward

Demo

GAME DEVELOPERS CONFERENCE ${ }^{*}$ | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#GDC18

Explanation

- Perfect heuristic near goal
- Open space
- Symmetric

New Algorithm: NBS

- NBS never expands more than $2 x$ the states expanded by the best possible algorithm
- In our theoretical framework
- NBS does equal work in each direction

When should we use NBS?

Scenario 1:

Weighted terrain

Weighted terrain

- Costly to look for alternate paths around weighted terrain

Scenario 2: Problem Asymmetry

Problem Asymmetry

- When forward is much more expensive than backwards
- 3x worse on average
- Also happens with weighted terrain

Scenario 3: Map Asymmetry

Map Asymmetry

- Common in city maps
- Dense regions of pathfinding nodes
- Bidirectional search will avoid the densest region

Scenario 4: Local Minima

GAME DEVELOPERS CONFERENCE ${ }^{*}$ | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#GDC18

Local Minima

- Many states look close, but aren't
- Could be fixed by a better heuristic

Testing in practice

- Web tool available for analysis
- http://www.movingai.com/GDC18/test.html

NBS Details

GAME DEVELOPERS CONFERENCE ${ }^{*}$ | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#GDC18

ARTIFICIAL
INTELLIGENCE
A^{*}

GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#GDC18
变, UBM

A*

- Put start onto priority queue

GAME DEVELOPERS CONFERENCE ${ }^{*}$ | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#GDC18

A*

- Put start onto priority queue
- While queue not empty / solution not found

A*

- Put start onto priority queue
- While queue not empty / solution not found
- Among all states on queue:

A*

- Put start onto priority queue
- While queue not empty / solution not found
- Among all states on queue:
- Select the state with lowest f-cost

A*

- Put start onto priority queue
- While queue not empty / solution not found
- Among all states on queue:
- Select the state with lowest f-cost
- Expand it

A*: f-cost
start
goal

A*: f-cost

goal

GAME DEVELOPERS CONFERENCE ${ }^{\circ}$ | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#GDC18

A*: f-cost

goal

GAME DEVELOPERS CONFERENCE ${ }^{\circ}$ | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#GDC18

A*: f-cost

A*: f-cost

A*

- Put start onto priority queue
- While queue not empty / solution not found
- Among all states on queue:
- Select the state with lowest f-cost
- Expand it

A* \rightarrow NBS

- Put start onto priority queue
- While queue not empty / solution not found
- Among all states on queue:
- Select the state with lowest f-cost
- Expand it

A* \rightarrow NBS

- Put start/goal onto forward/backward priority queues
- While queue not empty / solution not found
- Among all states on queue:
- Select the state with lowest f-cost
- Expand it

A* \rightarrow NBS

- Put start/goal onto forward/backward priority queues
- While queues not empty / solution not found
- Among all states on queue:
- Select the state with lowest f-cost
- Expand it

A* \rightarrow NBS

- Put start/goal onto forward/backward priority queues
- While queues not empty / solution not found
- Among all states on queues:
- Select the state with lowest f-cost
- Expand it

A* \rightarrow NBS

- Put start/goal onto forward/backward priority queues
- While queues not empty / solution not found
- Among all states on queues:
- Select the pair with lowest lower bound
- Expand it

A* \rightarrow NBS

- Put start/goal onto forward/backward priority queues
- While queues not empty / solution not found
- Among all states on queues:
- Select the pair with lowest lower bound
- Expand both of them

NBS: lower bound

○ goal

NBS: lower bound

GAME DEVELOPERS CONFERENCE ${ }^{\circ}$ | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#CDC18

NBS: lower bound

GAME DEVELOPERS CONFERENCE ${ }^{*}$ | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#GDC18

NBS: lower bound

GAME DEVELOPERS CONFERENCE ${ }^{-1}$ | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#GDC18

NBS: lower bound

GAME DEVELOPERS CONFERENCE ${ }^{-1}$ | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#GDC18

NBS: lower bound

NBS: lower bound

NBS: lower bound

GAME DEVELOPERS CONFERENCE ${ }^{*}$ | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#GDC18

NBS: lower bound

NBS: lower bound

GAME DEVELOPERS CONFERENCE ${ }^{\circ}$ | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#CDC18

NBS: lower bound

$$
\mathrm{f}_{\mathrm{B}}(\mathrm{v})=\mathrm{g}_{\mathrm{B}}(\mathrm{v})+\mathrm{h}(\text { start, } \mathrm{v})
$$

NBS: lower bound

NBS: lower bound

NBS: lower bound

GAME DEVELOPERS CONFERENCE ${ }^{\circ}$ | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 \#GDC18

NBS: lower bound

goal

$$
g_{F}(u)+g_{B}(v)
$$

NBS: lower bound

$$
\begin{aligned}
\operatorname{lb}(u, v)=\max & \left(f_{F}(u),\right. \\
& f_{B}(v), \\
& \left.g_{F}(u)+g_{B}(v)\right)
\end{aligned}
$$

NBS Data Structure

- Can efficiently find pair with minimum lower bound
- Filter by f-cost then by g-cost

NBS Data Structure

- Can efficiently find pair with minimum lower bound
- Filter by f-cost then by g-cost
- Cannot just select by f-cost (A*) or g-cost (Dijkstra)

NBS Guarantee

- NBS never expands more than $2 x$ the states expanded by the best possible algorithm
- In our theoretical framework
- NBS does equal work in each direction

Suboptimal Solutions

- Use weighted A* if path quality doesn't matter
- Terminate the search when the first solution is found in bidirectional search

Summary / Conclusions

- Use NBS for bidirectional search
- May want bidirectional search for:
- Weighted terrain
- Problem Asymmetry
- Map Asymmetry
- Local Minima

Questions?

- http://www.movingai.com/GDC18/
- Open-source implementation of NBS
- Demo from this lecture*
- Offline analyzer for analyzing pathfinding
- Technical reference papers
- Find me on twitter:
- @nathansttt

